

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X 67617

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fifth Semester

Computer Science and Engineering MA 1301 – DISCRETE MATHEMATICS (Regulations 2008)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is meant by proposition? Give an example.
- 2. State the rules of inference for statement calculus.
- 3. Express the statement "Everybody loves somebody" using quantifiers.
- 4. Let D(u, v): u is divisible by v. Over the universe $\{5, 7, 10, 11\}$ what are the truth values of $(\exists u) D(u, 5)$ and (y) D(y, 5).
- 5. Is the "divides" relation on the set of positive integers transitive?
- 6. State any two properties of Lattices.
- 7. Define binary and n-ary operations.
- 8. Show that the function $f: R \to R$ defined by f(x) = 2x + 7 is a permutation function.
- 9. State the relation between semigroup and monoid.
- 10. What are "Encoder and Decoder"?

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) i) Show that $(\sim P \land (\sim Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$.

(8)

ii) Obtain the principal conjunctive normal form of the formula given by $(\sim p \rightarrow r) \land (q \leftrightarrow p)$.

(8)

(OR)

b) i) Show that $R \to S$ can be derived from the premises $P \to (Q \to S)$, $\sim R \vee P$ and Q.

(8)

ii) Using truth table, prove that $(p \to q) \land (q \to r) \Rightarrow (p \to r)$.

(0)

12. a) i) Show, by that (x) $(P(x) \lor Q(x)) \Rightarrow (x) P(x) \lor (\exists x) Q(x)$.

(8)

(8)

ii) Show that the premises "One student in this class knows how to write programs in JAVA" and "Everyone who knows how to write programs in JAVA can get a high-paying job" imply the conclusion "Someone in this class can get a high-paying job".

(8)

(OR)

b) i) Using CP or otherwise, obtain the following implication:

 $(x) (P(x) \rightarrow Q(x)), (x) (R(x) \rightarrow \neg Q(x)) \Rightarrow (x) R(x) \rightarrow \neg P(x))$

(8)

ii) Show that \neg P(a, b) follows logically from (x) (y) (P(x, y) \rightarrow w (x, y)) and \neg w (a, b).

(8)

13. a) i) Find the partitions of the set $A = \{1, 2, 3\}$.

(8)

(8)

ii) In a distributive lattice L, prove that

 $a \wedge b = a \wedge c$ and $a \vee b = a \vee c \Rightarrow b = c$.

(OR)

b) i) Prove that the relation $R = \{(x, y)/x \equiv y \pmod{3}\}$ defined on the set of real number is an equivalence relation.

(8)

ii) In a Boolean algebra, prove that $(a+b) \cdot (a'+c) = ac + a'b$.

(8)

14. a) i) Show that the functions f and g which both are from $N \times N$ to N given by f(x, y) = x + y and g(x, y) = xy are onto but not one-to-one.

(8)

ii) Using characteristic function, prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (8)

(OR)

- b) i) Show that the function [x/2] which is equal to the greatest integer which is ≤ x/2 is primitive recursive.
 - ii) Prove that the product of two even permutation is even. (8)
- 15. a) i) Define monoid. Give an example. For any commutative monoid (m, *), show that the set of idempotent elements of m forms a submonoid. (8)
 - ii) State and prove Lagrange's theorem. (8)

(OR)

- b) i) Prove that the Kernel of a homomorphism g from a group (G, *) to (H, Δ) is a normal subgroup of G.
 - ii) Determine the single-error correcting code generated by the parity-check

$$\text{matrix H} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} . \text{ If } (0, 0, 0, 0, 1, 1) \text{ is the received word, }$$

find the transmitted code word. (8)